Inverse diffusion theory of photoacoustics
نویسندگان
چکیده
منابع مشابه
Inverse Diffusion Theory of Photoacoustics
This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photoacoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well-studied in the lite...
متن کاملInverse Transport Theory of Photoacoustics
We consider the reconstruction of optical parameters in a domain of interest from photoacoustic data. Photoacoustic tomography (PAT) radiates high frequency electromagnetic waves into the domain and measures acoustic signals emitted by the resulting thermal expansion. Acoustic signals are then used to construct the deposited thermal energy map. The latter depends on the constitutive optical par...
متن کاملReflective Inverse Diffusion
Phase front modulation was previously used to refocus light after transmission through scattering media. This process has been adapted here to work in reflection. A liquid crystal spatial light modulator is used to conjugate the phase scattering properties of diffuse reflectors to produce a converging phase front just after reflection. The resultant focused spot had intensity enhancement values...
متن کاملBiomedical photoacoustics in China☆
During the last decade, along with its explosive growth globally, biomedical photoacoustics has become a rapidly growing research field in China as well. In particular, photoacoustic tomography (PAT), capable of imaging intact biological tissue in vivo at great depths, has generated intense interest among Chinese researchers. This review briefly summarizes the current status and recent progress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inverse Problems
سال: 2010
ISSN: 0266-5611,1361-6420
DOI: 10.1088/0266-5611/26/8/085010